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We have developed a two-dimensional tensor artificial viscosity for finite differ-
ence shock wave computations. The discrete viscosity tensor is formed by multiplying
the gradient of velocity tensor by a scalar term. The scalar term is based on the form
of viscosity first presented by Kurapatanko, and also contains a limiter designed to
switch off the viscosity for shockless compression and rigid-body rotation. Mimetic
discretizations are used to derive the form of the momentum and energy equations
for a nonorthogonal grid where the viscosity tensor is evaluated at the zone edges.
The advantage of the tensor viscosity is a reduction of the dependence of the solution
on the relation of the grid to the flow structure.c© 2001 Academic Press

1. INTRODUCTION

In this paper we describe the implementation of a tensor artificial viscosity into a La-
grangian hydrodynamics code. The governing equations of Lagrangian hydrodynamics are
the momentum (1) and energy equations (2), which are written

ρ
dv
dt
= −∇P, (1)

ρ
de

dt
= −P∇ · v, (2)

whereρ is density,P is pressure,e is specific internal energy, andv is the velocity vector.
If the hydrodynamics code is intended to solve problems containing shock waves, then

special methods are required to model the shock wave; otherwise postshock oscillation will
destroy the solution. A standard strategy is shock capturing through the introduction of an
artificial viscosity term.
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The methodology of artificial viscosity was first developed by Von Neumann and
Richtmyer [18] for one-dimensional shock wave calculations. Their approach was to mod-
ify the momentum and energy equations by adding a dissipative, viscosity-like term to the
pressure. This term was chosen to produce a shock wave thickness on the order of the
spacing of the computational mesh. The Von Neumann–Richtmyer viscosity had the form

q=−cqρ1v|1v|, (3)

wherecq is a nondimensional constant. This term is quadratic in1v, and is positive in
compression and negative in expansion. The viscosity term is not required in expansion,
and it is common to setq= 0 when1v > 0.

When using (3), nonphysical oscillations were still seen behind the shock wave. To
remove these oscillations Landshoff [12] added a second term toq that was linear in1v
and so vanished less rapidly behind a shock wave. Now the viscosity has the form

q= cLρcs|1v| + cQρ(1v)2, (4)

wherecs is the local sound speed andcL andcQ are nondimensional constants,cL multiply-
ing the linear term, andcQ the quadratic. This basic form of viscosity has become widely
used.

Another form of the viscosity term was described by Wilkins [19] who attributed it to
Kurapatenko [11], and which is derived from the expression for the pressure jump across a
shock in an ideal gas,

qKur = ρ
{

c2
(γ + 1)

4
|1v| +

√
c2

2

(
γ + 1

4

)2

(1v)2+ c2
1c2

s

}
|1v| (5)

wherec1 andc2 are nondimensional constants, andγ is the ratio of specific heats. We refer
to this expression as the Kurapatenko form of viscosity. Withc1= c2= 1, ρ and cs the
density and sound speed ahead of the shock, and1v the velocity jump across the shock,
(5) gives the pressure jump across the shock. Equation (5) reduces to the linear term of the
basic shock viscosity as1v→ 0, and the quadratic term ascs→ 0 or when1v becomes
large.

In a one-dimensional calculation,1v is clearly defined. The simplest extension ton
dimensions is to treat the viscosity as a scalar pressure term and set1v ≈ n

√
V(∇ · v),

whereV is the zone volume. A more accurate extension would be to take the velocity jump
across the zone in the direction of the shock, but reliably calculating the shock direction is
difficult. For a review of viscosity formulations, see Benson [1].

Recently Caramanaet al. [7] specified five properties that an artificial viscosity should
possess; these include

1. Dissipativity: The artificial viscosity must only act to decrease kinetic energy.
2. Galilean invariance: The viscosity should not be affected by the addition of a constant

velocity field, and should vanish smoothly as the velocity field becomes constant.
3. Self-similar motion invariance: The viscosity should vanish for uniform contraction

and rigid rotation.
4. Wave-front invariance: The viscosity should have no effect along a wave front of

constant phase.
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FIG. 1. A section of a logical mesh. The dotted lines show the boundaries of the triangular subzones, one
subzone is shaded. The dashed lines show the median mesh. The vectors normal to the median mesh, s, are defined
as positive in the direction shown. Edgesk− 1 andk+ 1 are the left and right neighbors of edgek in the limiter
function.

5. Viscous force continuity: The viscous force should go to zero continuously as com-
pression vanishes and remain zero for expansion.

In the same paper [7], an edge viscosity for Lagrangian codes designed to satisfy these
conditions is then presented, although wave front invariance is only demonstrated for
grids aligned with the flow, such as radial flow on a polar grid. Since we will compare
our new viscosity to this edge viscosity, we now give a short description of the edge
viscosity.

The edge viscosity assumes a spatially staggered grid where pressure, density, and energy
are specified in the zones and velocity at the points. Each zone is subdivided by the median
mesh that connects the center of a zone to the middle of each adjacent edge; see Fig. 1. The
median mesh defines the control volume used to calculate the nodal forces in the momentum
equation. The vector s is the normal to the median mesh; its magnitude is equal to the length
of the associated piece of the median mesh.

For the edge viscosity, each zone is split into four triangular subzones, where each subzone
is defined by the two nodes on an edge and the zone center; see Fig. 1. The viscosity is
assumed constant inside each subzone. The nodal acceleration can then be calculated using
the compatible finite difference method of integrating around the median mesh surrounding
each node [5]. The median mesh around a point forms an eight-sided figure and the viscosity
is assumed constant along each side.

Edgek connects the two pointsb andc in Fig. 1. For the subzone in zonez associated
with edgek, the viscosity force is

f z
k =

{
(1− ψk)qKur,k

(
1̂vk · sz

k

)
1̂vk if

(
1vk · sz

k

)
< 0

0 if
(
1vk · sz

k

) ≥ 0 .
(6)

The edge forcef z
k contributes to the total force at pointsb andc. The velocity difference

along the edge is1vk= vb − vc, and1̂vk is the unit vector in the direction of this velocity
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difference. For the edge, the density and sound speed are

ρk= 2ρbρc

ρb+ ρc
, cs,k= min(cs,b, cs,c). (7)

The density and sound speed at a node are the volume-weighted averages of the surrounding
zones. The final term to be defined isψk, which is a limiter function that acts to switch off
the viscosity for self-similar motion and along wave fronts of constant phase. The limiter
function is defined as

ψk = max[0,min(0.5(rl ,k+ rr,k), 2rl ,k , 2rr,k, 1)], (8)

rr,k = 1vk+ 1 · 1̂vk

1xk+ 1 · 1̂xk

/ |1vk|
|1xk| , rl ,k= 1vk−1 · 1̂vk

1xk−1 · 1̂xk

/ |1vk|
|1xk| · (9)

Figure 1 shows how the left and right edges are defined on a logical grid. On an unstructured
grid, the neighbor edges are found by checking all edges that meet at a point, and then
selecting the edge that forms the largest angle with the center edge.

The termψ is a multidimensional form of a one-dimensional TVD advection limiter.
The limiter switches off the viscosity when the second derivative of the velocity field is
zero and has the advantage that the second derivative does not have to be calculated. The
limiter ensures that the viscosity satisfies the conditions of self-similar motion invariance
and wave front invariance.

Figure 2 shows results obtained by using the edge viscosity to simulate the cylindrical
Noh problem [14], a common test problem for Lagrangian hydrodynamics codes, for two
different initial grids. A volume of perfect gas is given an initial inward radial velocity
with unit magnitude. A circular shock wave is generated at the center of convergence and
propagates outward. In the analytic solution, the shock wave has a radius of 0.2 at time 0.6.
Both grids assume symmetry planes along the coordinate axes. The correct result is seen
for the initially polar grid, Fig. 2a, where the grid remains polar and is aligned with the flow
throughout the calculation. On the initially square grid, Fig. 2b, jets form along the axes and

FIG. 2. Cylindrical Noh problem results for edge viscosity. (a) Polar grid, no subzonal pressures. (b) Cartesian
grid, subzonal pressures merit factor= 0.1.
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grid buckling occurs. The grid buckling can be controlled by using the subzonal pressure
method [6]. This method uses subzonal forces to stabilize the grid by reducing spurious
distortions. A nondimensional merit factor multiplies the magnitude of these forces; 0.1 is
a small value for the merit factor. As can be seen in Fig. 2b, the use of subzonal pressures
does prevent the grid buckling, but does not prevent the jets. The subzonal pressure method
was only designed to suppress spurious grid motion at spatial scales equivalent to the local
grid length. The jets occur on a larger spatial scale and are not suppressed. The jets are
not caused by the boundary conditions, as the jets also occur when the whole domain is
modeled.

Our opinion is that these jets occur as a result of the grid dependence of the edge viscosity.
In [7], the edge viscosity is considered a local “tensor” that is constant within each triangular
subzone. This “tensor” is formed from the product of the scalar factor(1− ψk)qKur,k, with
the dyadiĉ1vk1̂vk. However this “tensor” is not a discrete approximation of any continuous
tensor. Even for a smooth flow on a smooth grid, the relative magnitude of its components
can change dramatically within one zone because of the1v term and the limiter function,
which is designed to be directional. As a consequence, this viscosity does not have a
well-defined continuum limit, and has a random dependence on the grid.

The aim of the work described here is to develop a viscosity that retains the useful
features of the edge viscosity given by the five properties, but reduces the dependence on
the relation of the grid to the flow structure. To achieve this we assume the viscosity is
a discrete approximation of a continuous tensor function,Q, which is a combination of
a scalar coefficient and the gradient of velocity tensor. The viscous force is calculated in
the momentum equation, which contains the divergence of tensorQ. Choosing an artificial
viscosity similar in analytical form to the physical viscosity tensor allows us to consider the
derivation of the viscosity in two separate parts: the definition of the viscosity coefficient,
and the derivation of discrete approximation to the gradient of velocity and the divergence
of the viscosity tensor. As the artificial viscosity stress tensor does not have to be symmetric,
we will consider a viscosity of the form

Q=µGT, (10)

whereG=∇v andµ is a scalar coefficient. We will construct the discrete equations so that
the viscosity tensor is calculated on zone edges as the tangential projection to the edge.
This is natural for a staggered discretization where velocity components are given at grid
nodes. As we will show by numerical experiment, our new viscosity, which we will refer
to as “tensor viscosity”, reduces the dependence of the numerical solution on the grid. The
numerical experiments employ an unstructured grid finite difference code [3].

In the next section we will discuss the general form of the viscosity, and the constraints
that must be placed on the form of the viscosity coefficient in order to satisfy the five
properties of [7]. In Section 3, expressions for the divergence of a tensor and gradient of
a vector in a general curvilinear coordinate system will be derived. These expressions will
then be used in Section 4 to develop the discrete operators required to implement the tensor
viscosity. Then in Section 5, we will describe the actual form of viscosity coefficient used,
and the implementation of the viscosity in the test code. In Section 6, results from three test
problems will be shown, comparing the edge viscosity to the new tensor viscosity. Finally,
the conclusions will be given in Section 7.
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2. CONTINUOUS FORM OF TENSOR ARTIFICIAL VISCOSITY

We introduce the general form of the new tensor viscosity and analyze it on the continuum
level where the results are more transparent. We start by assuming a form similar to physical
viscosity. However, it is not necessary for the artificial viscosity to be symmetric, so we
use the gradient of velocity tensor,G, rather than the symmetric rate of deformation tensor
used for physical viscosity. We define the viscosity tensor,Q, as

Q=µGT, (11)

whereµ is a scalar coefficient. For this viscosity tensor, the momentum and energy equations,
considering only the viscosity terms, become

ρ
dv
dt
= ∇ ·QT=∇ · (µG) (12)

ρ
de

dt
= Q · ·G=µG : G, (13)

whereQ ··G= Qi j G ji , andG : G=Gi j Gi j using the summation convention.
A nonsymmetric viscosity gives a useful property in the discrete model: there is no mode

conversion [13]. This means that for a shear flow in which all velocities are parallel, the
viscous force will only act in the velocity direction. With a symmetric tensor viscosity, the
force would have a component perpendicular to the velocity direction.

In order to ensure dissipativity, we need to make sure that the viscosity can only decrease
the kinetic energy. Therefore, in the energy equation we need to ensure that theQ · ·G is
always positive. From (13) it can be seen that this condition is satisfied by ensuringµ ≥ 0.

Self-similar motion invariance requires thatµ= 0; this property can be achieved by
including a limiter function similar to that used for the edge viscosity. Galilean invariance
requires thatµ is Galilean invariant. In addition, as the velocity field becomes constant, all
terms inG must become zero, so the viscosity will vanish smoothly.

Viscous force continuity requires some switch to ensure thatµ= 0 in expansion. For the
tensor viscosity, a clear choice for defining compression and expansion is the divergence of
velocity. However, this switch will only partly satisfy the condition that the viscosity force
should go to zero smoothly. It can be seen in Eq. (6) that the edge viscosity contains the
(1vk · sz

k) term that is used to detect compression and expansion. As this term multiplies
all other terms in the force equation, it ensures that the force does go to zero smoothly.
In the tensor viscosity, this property can only be satisfied by ensuring thatµ goes to zero
smoothly. This would require a quadratic only viscosity with the1v term proportional to
∇ · v. The tensor viscosity can only fully satisfy this property at the expense of introducing
oscillations behind a shock wave. We choose to use both linear and quadratic terms to
suppress the oscillations, with the consequence that viscous force continuity is not satisfied.

The final property, wave-front invariance, is satisfied because of the functional form of
viscosity, so the limiter function is only required to ensure self-similar motion invariance.
To check for wave-front invariance, we will take the case of radial flow, which was used
in [7] to show wave-front invariance for the edge viscosity. For 2D cylindrical coordinates
(r, θ), the velocity gradient tensor is

Q=µ
[

∂vr
∂r

∂vθ
∂r

1
r
∂vr
∂θ
− vθ

r
1
r
∂vθ
∂θ
+ vr

r

]
, (14)
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and the momentum equation is

ρar = ∂Qrr

∂r
+ 1

r

∂Qθr

∂θ
+ 1

r
(Qrr − Qθθ )

(15)

ρaθ = ∂Qr θ

∂r
+ 1

r

∂Qθθ

∂θ
+ 1

r
(Qr θ − Qθr ).

For radial flow,vθ = 0 and∂vr
∂θ
= 0 so the momentum equation becomes

ρar = ∂

∂r

(
µ
∂vr

∂r

)
+ µ

r

∂vr

∂r
(16)

ρaθ = 0.

As the viscosity only produces accelerations in the radial direction, it satisfies the condition
of wave-front invariance.

3. GRADIENT OF A VECTOR AND DIVERGENCE OF A TENSOR

IN A GENERAL COORDINATE SYSTEM

To implement the tensor viscosity, we need to define the discrete analogs of the divergence
of a tensor and the gradient of a vector. To introduce limiters and retain the good properties
of the edge viscosity, it will be useful to construct these discrete operators using a local
coordinate system. This will allow the viscosity tensor to be defined by tangential projections
to the zone edges in the discrete divergence operator. In this section, we derive continuous
expressions for the divergence and gradient for a general coordinate system, which will be
used as a guide to derive the discrete expressions.

We consider two coordinate systems. The first is the Cartesian coordinate system,(x, y).
The second is a general curvilinear system,(ξ, η), with basis vectorseξ andeη tangential
to the coordinate lines. These are shown in Fig. 3. The Cartesian components of the basis
vectors are

eξ =
 ∂x

∂ξ

∂y
∂ξ

 , eη=
 ∂x

∂η

∂y
∂η

 . (17)

FIG. 3. Basis vectors of general coordinate system(ξ, η). θ is the angle between the vectors tangential to the
coordinate system.
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The components of the metric tensor relative to the general coordinate system are

gξξ = eξ · eξ , gηη= eη · eη, gξη= gηξ = eη · eξ . (18)

From these the determinant of the metric tensor,|g|, can be found.
The gradient of velocity tensor,G, is defined as

Gi j = ∂vi

∂xj
, (19)

wherex1= x, x2= y andv= [v1, v2]= [vx, vy]. For convenience, we write this as

G= gradv=∇v. (20)

In a general coordinate system, a tensor can be represented by two vectors that are
projections of the tensor to the two basis vectors. Each vector is the dot product of the
tensor with a unit basis vector

Gξ =G · êξ and Gη=G · êη, (21)

where the hat signifies a unit vector. The Cartesian components of these vectors can be
rewritten in terms of the derivatives of the vectorv with respect toξ andη

Gξ = 1√
gξξ

 ∂vx
∂ξ

∂vy

∂ξ

 =(Gξx

Gξy

)
, Gη= 1√

gηη

 ∂vx
∂η

∂vy

∂η

 =(Gηx

Gηy

)
. (22)

In the discrete case, we will derive the expression for the divergence, divT=∇ · T, using
a discrete form of the integral identity∫

V
∇v : T dV=

∮
∂V

v · (T · n) dS−
∫

V
v · (∇ · T) dV, (23)

whereT is any second-order tensor. This expression means that the divergence is the negative
adjoint of the gradient,

(div)=−(grad)∗. (24)

To use the identity (23), an expression for the tensor scalar product in terms of the tan-
gential projections is required. The scalar product is easily written in terms of the Cartesian
components of the tensors. We start by defining the Cartesian components ofG in terms
of Gξ andGη. These formulae are valid for any tensor, and are found by solving the set of
equations represented by (21)

Gxx =
√

gξξ√|g|
∂y

∂η
Gξx −

√
gηη√|g|

∂y

∂ξ
Gηx

Gxy =
√

gηη√|g|
∂x

∂ξ
Gηx −

√
gξξ√|g|

∂x

∂η
Gξx (25)
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Gyx =
√

gξξ√|g|
∂y

∂η
Gξy −

√
gηη√|g|

∂y

∂ξ
Gηy

Gyy =
√

gηη√|g|
∂x

∂ξ
Gηy −

√
gξξ√|g|

∂x

∂η
Gξy.

Now it is possible to write the scalar product and collect terms to derive

G : T = Gξ ·
[
Tξ

gξξgηη
|g| − Tη

gξη
|g|
√

gξξ
√

gηη

]
+Gη ·

[
Tη

gξξgηη
|g| − Tξ

gξη
|g|
√

gξξ
√

gηη

]
.

(26)

Rearranging and noting that

gξξgηη
|g| =

1

sin2 θ
,

gξη√
gξξ
√

gηη
= cosθ (27)

allows us to rewrite the scalar product only in terms of the tangential projections and the
angleθ betweeneξ andeη (Fig. 3):

G : T= 1

sin2 θ
[Gξ · Tξ +Gη · Tη − cosθ(Gξ · Tη+Gη · Tξ )]. (28)

Comparing (28) with the expression for the vector dot product in [9] shows that the
two expressions are equivalent except that theξ and η terms are vectors in this
case.

In deriving an expression for the divergence using (23) we assume, for simplicity, that
the surface integral is zero. Then we use Eq. (25) for∇v : T and replace theGξ andGη

terms with the derivatives of vectorv using (22). This gives∫ ∫
∇v :T

√
|g| dξ dη

=
∫ ∫ (

∂v
∂ξ
·
[

Tξ− cosθTη
√

gξξ sin2 θ

]
+ ∂v
∂η
·
[

Tη− cosθTξ
√

gηη sin2 θ

])√
|g| dξ dη. (29)

Integrating this expression by parts gives two terms that are equivalent to the RHS of (23).
Ignoring the terms representing the surface integral leaves∫ ∫

v · (∇ · T)
√
|g| dξ dη

=
∫ ∫ (

v · ∂
∂ξ

[√
|g|T

ξ − cosθTη
√

gξξ sin2 θ

]
+ v · ∂

∂η

[√
|g|T

η− cosθTξ
√

gηη sin2 θ

])
dξ d η. (30)

Now we can write the expression for the divergence

∇ · T = 1√|g|

{
∂

∂ξ

[√
|g|T

ξ − cosθTη
√

gξξ sin2 θ

]
+ ∂

∂η

[√
|g|T

η − cosθTξ
√

gηη sin2 θ

]}
. (31)
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This form can also be derived directly from the expression for the divergence in terms of
Txx, Tyy, Txy, andTyx. However, from a methodological point of view, it is useful to derive
it using the integral identity.

4. DISCRETE OPERATORS

This section describes the derivation of discrete forms of the gradient of a vector and
divergence of a tensor on a grid. The derivation uses tangential projections to zone edges, and
is an extension of the mimetic finite difference method [9, 10, 17] to second-order tensors.
In the mimetic finite difference method, a discrete approximation for a differential operator,
such as divergence or gradient, is chosen. This initial or prime operator then supports the
derivation of other discrete operators.

4.1. Grid

We construct the discrete functions on a spatially staggered grid. Figure 4a shows a section
of the staggered grid. The median mesh is constructed by connecting the zone centers with
the mid-side points. A fundamental assumption for a Lagrangian method is that each zone of
the grid represents a discrete volume element that may deform, but does not gain or lose mass.
If the zone center moves in a Lagrangian manner then the same assumption can be made
for the median mesh. This justifies the definition of a Lagrangian subzonal corner volume,
shown in Fig. 4a as the shaded area, which has constant mass. We denote the corner volume
asVz

p, where the indices denote the zone and point with which it is associated. We define
Vz

p =V p
z and follow the convention that in a sum we always sum with respect to the lower

index. The corner volume can then be used to define both a zone volume and a point volume:

Vz=
∑

p∈S(z)

Vz
p, Vp=

∑
z∈S(p)

V p
z (32)

The stencil for a zone is each point that is a vertex of the zone. For a point, the stencil is
every adjacent zone. As the mass of a subzone is constant, a density is easily defined for

FIG. 4. (a) Fragment of a staggered grid, including zonez and pointp. The solid lines show the grid and the
dashed lines show the median mesh. The shaded area shows a subzonal Lagrangian corner object with volume
Vz

p . (b) We choose notation relative to the currently selected pointp, which is a vertex of zonez. The arrows next
to each edge show the positive direction ofê. The length of edgep+ 1

2
is l p+ 1

2
.
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the volume. The same super and subscript notation is used for any value that is associated
with both a point and a zone.

Figure 4b illustrates the notation used for the geometrical elements used in the discrete
operators. The notation is relative to pointp, which is a vertex of zonez. The expression̂ep+ 1

2

is the unit vector along edgep+ 1
2, which connects pointsp andp+ 1. The arrows shown

define the positive direction ofê. The length of the edgep+ 1
2 is l p+ 1

2
. The expressionθ z

p

is the angle between the two edges of zonez that meet at pointp.

4.2. The Prime Operator

We need expressions for the following two operators:GRAD, the discrete form of the
vector gradient, andDIV , the discrete form of the tensor divergence. In this paper, tensors are
defined as tangential projections to the zone edges. We choose the discrete vector gradient
as the prime operator.

For the direction given by unit vectorl̂, the directional derivative of the vector fieldv is

∂v
∂l
= l̂ · ∇v. (33)

Then the projection of this tensorG=GRAD v to the edgep+ 1
2 is

Ge
p+ 1

2
=Gp+ 1

2
· êp+ 1

2
= vp+ 1− vp

l p+ 1
2

. (34)

The relation between Eqs. (34) and (22) becomes clear when we recall the identities

dlξ =√gξξ dξ, dlη=√gηη dη, (35)

wheredlξ anddlη are elements of the arcs of the coordinate curves.

4.3. The Derived Operator

We now use the prime operator to derive the discrete divergenceDIV , through the defi-
nition DIV = −GRAD∗.

The first step is to construct a discrete form of Eq. (28), the tensor scalar product. We
approximate the continuous equation by

(G,T)z =
∑

p∈S(z)

Wz
p

sin2 θ z
p

{
Ge

p− 1
2
· Te

p− 1
2
+Ge

p+ 1
2
· Te

p+ 1
2

+ cosθ z
p

[
Ge

p− 1
2
· Te

p+ 1
2
+Ge

p+ 1
2
· Te

p− 1
2

]}
, (36)

which defines the scalar product in zonez. In this expression, the sign of the cosine has
changed because of the sign convention adopted. The expressionWz

p are weights that satisfy
the conditions

Wz
p ≥ 0,

∑
p∈S(z)

Wz
p= 1. (37)
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We defineWz
p as one-half the area of the triangle in zonez that contains the angle at point

p, divided by volume of the zone. For a nonquadrilateral zone, this definition must be
normalized to ensure that the second condition is satisfied. This choice of weights gives a
first-order approximation of the operator [17].

To deriveDIV from (36) and (34), we use the discrete form of the integral identity (23)
and assume for simplicity that the surface integral is zero. This gives us

∑
z

(G,T)zVz=−
∑

p

(v,DIV T )pVp. (38)

Substitute (36) into (38), and substitute forGe using (34). This gives an expression that con-
tains the velocity vector at three points:vp+ 1, vp, andvp−1. Then rewriting the expression
to collect all thev terms at pointp gives

−
∑

p

(v,DIV T )pVp

=
∑

z

∑
p∈S(z)

vp ·
(

Wz
p

sin2 θ z
p

{
Te

p− 1
2

l p− 1
2

−
Te

p+ 1
2

l p+ 1
2

+ cosθ z
p

[
Te

p+ 1
2

l p− 1
2

−
Te

p− 1
2

l p+ 1
2

]}

+ Wz
p−1

sin2 θ z
p−1

{
Te

p− 1
2

l p− 1
2

+ cosθ z
p−1

Te
p− 3

2

l p− 1
2

}
− Wz

p+ 1
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(39)

Now the expression forDIV T at a point can be found

(DIV T )p = 1
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. (40)

Figure 5 shows the stencil for the operator(DIV T )p. In the derivation above we have
made no assumptions about the grid structure. These operators are equally applicable for
structured and unstructured grids [4].

5. DISCRETE FORM OF TENSOR ARTIFICIAL VISCOSITY

We now define the discrete scalar viscosity coefficient,µ, and combine it with the discrete
divergence to produce an expression for the viscous force. In analogy with the edge viscosity,
we base the definition on the Kurapatenko form (5). In order to satisfy the dissipativity
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FIG. 5. Stencil for operator(DIV T )p on a logically rectangular grid.

condition when using the discrete scalar product, (36), the viscosity coefficient must be
constant within a corner volume. We defineµ as

µp
z =

(
1− ψ p

z

)
ρ p

z

{
c2
(γ + 1)

4

∣∣1vp
z

∣∣+
√

c2
2

(
γ + 1

4

)2 (
1vp

z
)2+ c2

1cs,z
2

}
l p
z . (41)

The speed of sound in zonez is cs,z; c1 andc2 are nondimensional, nonnegative constants.
The corner density,ρ p

z , is easily defined as the corner volume is a Lagrangian.
We use the velocity divergence of the corner volume to detect compression and expansion.

If the velocity divergence is positive in a corner, we setµp
z = 0. The velocity divergence in

a corner is defined as

(∇ · v)p
z =

1

2V p
z

[
(uz− up)

(
yp− 1

2
− yp+ 1

2

)− (up− 1
2
− up+ 1

2

)
(yz− yp)

− (vz− vp)
(
xp− 1

2
− xp+ 1

2

)+ (vp− 1
2
− vp+ 1

2

)
(xz− xp)

]
, (42)

wherev= [u, v]. The velocity for an edge is the average of the velocity at the two end
points. The velocity of a zone is the average of the zone vertex velocities.

The viscosity coefficient requires a definition for the velocity jump,1vp
z and for the

characteristic length,l p
z . A length scale is required to ensure that the dimensions of the

viscosity tensor are correct. The definition of these values has often caused difficulties in
multidimensional shock viscosities [1]. Simple definitions of length, such as the square root
of cell area in 2D, result in instabilities for large aspect ratio zones. Such zones do occur
in practical problems. A more sophisticated approach is to determine the shock direction
in a zone, but this has proved difficult to do accurately and reliably. This approach also
has problems with large aspect ratio cells, where a small change in velocity or geometry
can result in a large change in the length and velocity jump. To avoid these difficulties, we
look for a characteristic length that varies smoothly in time, and does not overestimate the
length.

A corner volume is adjacent to two edges, the lengths of which arel p+ 1
2

andl p− 1
2
; see

Fig. 4. We define the length as

l p
z = min

(
l p+ 1

2
, l p− 1

2

)
. (43)
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This choice of the smallest local length gives a measure that varies smoothly in time,
is not too large in high aspect ratio zones, and it avoids the need to estimate the shock
direction.

For the velocity jump we use

1vp
z = l p

z |∇ · v|pz . (44)

This term contains the corner velocity divergence that we use as the compression–expansion
switch, and so it will go to zero smoothly as compression vanishes.

The final term to be defined is the limiter functionψ p
z , which is calculated from the

limiter values on the adjacent edges

ψ p
z = min

(
ψp+ 1

2
, ψp− 1

2

)
. (45)

For edgek the limiter function is

ψk= min(ψ1, ψ2), (46)

where

ψ1 = max[0,min(0.5(rl ,k+ rr,k), 2rl ,k, 2rr,k, 1)]
(47)

ψ2 = max[0,min(0.5(rm,k+ r p,k), 2rm,k, 2r p,k, 1)].

Ther terms are defined

rl ,k= (div v)l
(div v)k

, rr,k= (div v)r
(div v)k

(48)

ra,k= (div v)a
(div v)k

, rb,k= (div v)b
(div v)k

.

This limiter function requires four neighbor edges. In addition to the same left and right
edges used for the edge viscosity, abovea and belowbedges must be chosen. Figure 6 shows
how these neighbor edges are defined on a quadrilateral grid. For an edge, the divergence is
calculated for the quadrilateral volume formed by the two end points and the centers of the
two adjacent zones; see Fig. 6. In one dimension, this function reduces to the same function
as the edge viscosity limiter.

FIG. 6. Neighbor edges of edgek used for limiter function. The shaded area shows the volume used to
calculate the divergence of velocity for the edge.
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It is possible to define a similar function that calculates a limiter value directly for a
corner volume, by using the velocity divergence calculated for corner volumes. However,
this gives incorrect results because the velocity at three of the four vertices of a corner is
interpolated. The limiter function will switch off the viscosity if all neighbor volumes have
equal or larger divergence. The incorrect results can be clearly seen in the case when a
shock wave is aligned with the grid, such as in a one-dimensional calculation. In this case,
the corner limiter will switch off the viscosity for corners on the upstream side of a zone as
the wave passes through the zone.

It is convenient to calculate the viscous force at a point in terms of corner forces,f p
z .

A corner force is the force from zonez that acts on pointp; so summing over the stencil
of p gives the total force at the point. The discrete momentum equation at pointp is
written

mp
dvp

dt
=Vp(DIV Q )p=Fp=

∑
z∈S(p)

f p
z , (49)

wheremp is the point mass. The viscosity corner forcef p
z is then

f p
z = Vz

[
1

l p+ 1
2

{
Wp+1

z

sin2 θ
p+1
z

(
µp+1

z Ge
p+ 1

2
+ cosθ p+1

z µp+1
z Ge

p+ 3
2

)}

+ 1

l p+ 1
2

{
Wp

z

sin2 θ
p
z

(
µp

z Ge
p+ 1

2
+ cosθ p

z µ
p
z Ge

p− 1
2

)}

− 1

l p− 1
2

{
Wp

z

sin2 θ
p
z

(
µp

z Ge
p− 1

2
+ cosθ p

z µ
p
z Ge

p+ 1
2

)}

− 1

l p− 1
2

{
Wp−1

z

sin2 θ
p−1
z

(
µp−1

z Ge
p− 1

2
+ cosθ p−1

z µp−1
z Ge

p− 3
2

)}]
. (50)

For zonez, the discrete energy equation is

Mz
dez

dt
=Vz(Q,G)z. (51)

Then using (39) it can be shown that the discrete energy equation becomes

Mz
dez

dt
=−

∑
p∈S(z)

f z
p · vp. (52)

These expressions are the discrete analogs of the continuous equations in Section 3.
Thus, they retain the properties of the continuous equations, such as dissipativity. Using the
mimetic finite difference approach to derive these expressions ensures that total energy is
conserved exactly, to numerical round off.

This viscosity only fully satisfies the viscous force continuity condition, that the viscous
force should go to zero smoothly as compression vanishes, when the linear term is removed
(c1= 0). However, when tested this removal resulted in oscillations behind shock waves,
so we retain the linear term.
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6. NUMERICAL RESULTS

We have implemented the tensor artificial viscosity in a test code. The test code [3] is
a two-dimensional, plane strain, unstructured grid Lagrangian finite difference code that
uses a compatible hydrodynamics algorithm [5]. The test code uses the Lagrangian subzonal
pressure method to control grid distortion [6], and also contains the edge viscosity developed
by Caramanaet al. [7], which is briefly described in the introduction. Therefore, we have
one code that contains both the edge viscosity and the tensor viscosity, allowing direct
comparison of the effects of the two different viscosities.

To avoid any interaction of the subzonal pressures and the artificial viscosity that may
obscure differences resulting from the different viscosities, subzonal pressures have not
been used unless necessary. In the following results, no subzonal pressures were used
unless otherwise indicated.

We present results for three test problems used to investigate the behavior of the tensor
viscosity. In all problems, the viscosity coefficients werec1= c2= 1.0 for both visco-
sities.

6.1. Noh Implosion Problem

The Noh problem [14] is a well-known test problem for Lagrangian algorithms. Here the
cylindrical implosion problem is modeled. A perfect gas withγ = 5/3 is given an initial
unit inward radial velocity. A circular shock wave is generated at the center of convergence
and subsequently expands. At time 0.6, this shock wave has a radial coordinate of 0.2, and
the density behind the shock is 16.0. Ahead of the shock, the gas is compressed as a result
of the convergence, and this produces a density profile with the equationρ= 1+ (t/R),
whereR is the radial coordinate andt the time. Results are shown for a polar grid (Fig. 7),
and an initially Cartesian grid (Figs. 8–11).

FIG. 7. Comparison of Noh problem results on a polar grid for tensor and edge viscosity. Both grids have 50 ra-
dial zones, initially all have an equal radial length of 0.02. The fine grid has 3◦ angular zoning, the coarse grid has 9◦

angular zoning. The zones at the origin have an aspect ratio of 6.4 : 1 for the coarse grid, and 19.1 : 1 for the fine grid.
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FIG. 8. Noh problem results on an initially Cartesian grid for edge viscosity, merit factor= 0.1. (a) Grid.
(b) Density contour plot.

The polar grid is constructed with 50 zones in the radial direction, and a maximum radius
of 1.0. The angular zoning is variable. The zones are quadrilateral away from the origin
and triangular at the origin. An example of the grid can be seen in Fig. 2. On a polar grid,
the edge viscosity gives better results (Fig. 7). This is due to the long thin zones at the
point of convergence. As the polar grid is aligned to the flow, the limiter function ensures
that the edge viscosity only acts along radial edges. With the tensor viscosity the uneven
solution near the origin is caused by the characteristic length, which has large variation
near the origin. It is possible to mitigate this problem by choosing a characteristic length
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specifically for this grid, such as the length of the longer edges. However, this choice, on a
fine polar grid, requires a very small time step to retain symmetry. In the tensor viscosity,
each corner force is a vector with radial and tangential components; at a point, the tangential
components cancel and leave a total force vector that is radial. If the characteristic length
is large compared to the shortest zone edge, then the tangential components are large
and round-off error combined with the low mass of the points close to the origin results
in some tangential motion of these nodes. This motion can be controlled by choosing a
restrictive time step; for 3◦ angular zoning, we found a CFL scale factor of≤ 0.05 was
required.

The Cartesian grid is 50× 50 zones, and the overall length of each edge is 1.0. Only
a quarter of the volume is modeled, symmetry boundary conditions are used along thex
andy axes. This is a test problem where the edge viscosity fails (Fig. 8). Along the axes,
jets form that result in a highly distorted grid and, without subzonal pressures, results in
internal grid points passing through the symmetry planes. Consequently, subzonal pressures
are required to reach time 0.6. However, subzonal pressures are not a cure for the problem,
but do prevent zones inverting and do not allow grid points to pass through the symmetry
planes. Increasing the merit factor results in the jets becoming even more pronounced. The
grid can be improved by increasing thec1 viscosity coefficient to around 3.75 or higher,
but this causes an error in the shock location and a very uneven density behind the shock
(Fig. 9).

For an initially square grid, the tensor viscosity results show a circular shock of radius
0.2, and a smooth grid behind the shock (Fig. 10). The density is not completely smooth
behind the shock, as angular variations are seen. Near the 45◦ line there is an overshoot in the
density immediately behind the shock, while no overshoot is observed near the coordinate
axes. The variation in the density can be clearly seen in Fig. 11, which plots the density as
a function of radius.

FIG. 9. Comparison of Noh problem results for polar (c1= 1.0) and Cartesian (c1= 3.75) grids for edge
viscosity. For the Cartesian grid, each point is a zone density plotted for the radius of the zone center.
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FIG. 10. Noh problem results on a Cartesian grid for tensor viscosity, no subzonal pressures. (a) Grid.
(b) Density contour plot.

Results for both viscosities show the well-known wall heating problem; this appears in
the density profile, which is underestimated near the point of convergence. We have not
attempted to address this problem in the tensor viscosity as this is an inherent problem with
shock physics codes [15], and approaches to treating wall heating are available [8, 14].

6.2. Saltzman Piston Problem

In the Saltzman piston problem [13] a one-dimensional shock wave propagates through
a two-dimensional grid. This problem tests the ability of the code to model shock waves
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FIG. 11. Noh problem results for the tensor viscosity on a Cartesian grid, compared with the exact result.
Each point is the density of a zone plotted against the radius of the zone center.

that are oblique to the grid. As artificial viscosity is critical for shock wave propagation,
the Saltzman piston problem has often been used as in testing artificial viscosities [1,
2, 13].

In the Saltzman problem, one end of a gas-filled box is a piston. The piston moves into
the box with a constant velocity of 1.0 and a strong shock wave is generated. The gas
is described by an ideal gas equation of state withγ = 5/3. The initial grid is shown in
Fig. 12. The initial length (x) is 1.0, and the height (y) is 0.1. The grid is 100 zones in
the x-direction and 10 in they-direction. On the upper and lower boundaries, symmetry
boundary conditions are used. The nodalx coordinates are prescribed as a function of their
logical coordinatesi, j by

x(i, j )= (i − 1)dx+ (11− j ) sin

(
π(i − 1)

100

)
dy, (53)

wheredx= 1/100 anddy= 0.1/10.
Results are shown for time 0.7 and time 0.925. At time 0.7, the analytic shock has an

x-coordinate of 0.9333, and has not yet reached the fixed end. The density behind the shock
is 4.0. By time 0.925, the shock has anx-coordinate of 0.95, and the shock has reflected
off the fixed and then moving ends. Now the density ahead of the shock is 10.0 and the
density behind the shock is 20.0. By this time, the grid ahead of the shock wave consists

FIG. 12. Initial grid for Saltzman piston problem. The piston moves from left to right at constant velocity.
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FIG. 13. Saltzman piston problem results for edge viscosity at t= 0.7, no subzonal pressures. (a) Grid.
(b) Density contour plot.

FIG. 14. Saltzman piston problem results for tensor viscosity at t= 0.7, no subzonal pressures. (a) Grid.
(b) Density contour plot.
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FIG. 15. Saltzman piston problem results for edge viscosity at t= 0.925, no subzonal pressures. (a) Grid.
(b) Density contour plot.

of zones that are short and wide with respect to the shock direction, with an aspect ratio of
1 : 10.

Both viscosities give good results for the Saltzman piston problem at time 0.7 (Figs. 13–
14). The grid is more regular for the tensor viscosity; when the calculation continues to
time 0.925, this smoother grid gives improved results. Figure 15 shows the edge viscosity
results at time 0.925, the grid has become uneven, and the shock wave is no longer planar.
The grid is close to buckling as it contains subzonal corner volumes that have inverted, but
no entire zone has inverted. The tensor viscosity results for time 0.925 show a smooth grid,
and a shock that is planar everywhere except near the upper boundary (Fig. 16). Adding
subzonal pressures would improve the smoothness of the grid for both viscosities.

We also used a variant of the Saltzman problem where the height of the initial grid
(Fig. 12) is reduced from 0.1 to 0.025. The initial grid is generated using Eq. (53) with
dx= 1/100 anddy= 0.025/10. Now the shock wave is traveling through zones that are
long and thin with respect to the shock wave; the zones have an aspect ratio of 4 : 1. This
is another problem where the edge viscosity causes large nonphysical grid distortions to
occur (Fig. 17). The tensor viscosity retains a smooth grid and the correct shock location
(Fig. 18). Compared with the results for the standard Saltzman problem, the density error
at the upper and lower boundaries has increased.

6.3. Sedov Blast Wave Problem

The Sedov blast wave problem [16] models the expanding wave generated by an in-
tense explosion in a perfect gas, an example of a diverging shock wave. The initial grid is

FIG. 16. Saltzman piston problem results for tensor viscosity at t= 0.925, no subzonal pressures. (a) Grid.
(b) Density contour plot.
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FIG. 17. 4 : 1 Saltzman piston problem grid for edge viscosity at t= 0.3, merit factor= 0.1. In this version of
the piston problem the edge viscosity produces a highly distorted mesh.

rectangular, consisting of 45× 90 zones with a total edge length of 1.1 in both directions.
The initial internal energy is zero except for the two zones closest to the origin, which have
a specific internal energy of 409.7. These two zones form a square, so the initial conditions
are symmetric about the 45◦ line. The analytic solution gives, forγ = 1.4, a shock at radius
unity at time unity, and with a peak density of 6.0. The numerical solution should retain
the symmetry about the 45◦ line of the initial conditions. As the initial grid is rectangular
and so not symmetric about this line, this problem provides a test of the ability of the code
to maintain the symmetry of the flow when the computational grid does not embody this
symmetry.

FIG. 18. 4 : 1 Saltzman piston problem results for tensor viscosity at t= 0.7, no subzonal pressures. (a) Grid.
(b) Density contour plot.
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FIG. 19. 1 : 2 Sedov problem results for edge viscosity, merit factor= 0.1. (a) Grid. (b) Density contour plot.

The results shown for both viscosities were generated using subzonal pressures, using a
merit factor of 0.1. Without subzonal pressures, the final grid for both viscosities includes
nonconvex zones near the origin. Subzonal pressures were used to maintain the quality of
the grid near the origin.

The edge viscosity now gives an elliptical shock front, with a larger radius along the
x-axis (45 zones) than they-axis (90 zones) (Fig. 19). The tensor viscosity gives a smooth
grid but unlike the edge viscosity retains a circular shock (Fig. 20).
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FIG. 20. 1 : 2 Sedov problem results for tensor viscosity, merit factor= 0.1. (a) Grid. (b) Density contour plot.

7. CONCLUSION

We have developed a new two-dimensional tensor artificial viscosity. The formalism
consists of a scalar viscosity coefficient and discrete operators for calculating the gradient
of velocity and the divergence of the viscosity tensor. The viscosity multiplies the gradient
of velocity tensor to produce the viscosity tensor.

The viscosity satisfies all but one of the conditions set out by Caramanaet al. [7]. The
condition not satisfied is viscous force continuity, which states that the viscous force should
go to zero smoothly as compression vanishes. As the viscosity coefficient contains the speed
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of sound, it does not go to zero smoothly. The condition can be satisfied by removing the
linear viscous term, but this makes the viscosity solely quadratic and results in oscillations
behind shock waves. We choose not to satisfy the viscous force continuity condition in
order not to introduce these oscillations.

Because of the tensor nature of the new viscosity, simulations have a reduced dependence
on the relation of the grid to the flow structure. This is seen most clearly in results for the Noh
problem on an initially square grid, and for the 4 : 1 Saltzman piston problem. For both these
problems, the tensor viscosity results show a smooth grid, while the edge viscosity produces
a highly distorted grid. In the standard Saltzman piston problem, the tensor viscosity gives
a smoother grid, which results in an improved solution once the shock reflects from the
fixed end of the piston. For the Sedov problem on an initially rectangular grid, the tensor
viscosity maintains the expected symmetry of the shock wave.

We have extended the mimetic discretization approach for general grids to tensor opera-
tors, deriving expressions for the gradient of a vector and divergence of a tensor. We have
used these discrete operators in the artificial viscosity. These operators can be used for any
application where the gradient of a vector and divergence of a tensor are required.

An important area for future work is to develop and test new formulations of the viscosity
coefficient and limiter function, as our tests have shown that these can have a strong effect
on the results. These studies should focus on developing forms of the coefficient that fully
satisfy the viscous force continuity condition.
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